eu efre logo

 

Anders als gedacht: Gehirn verarbeitet Seheindrücke auch rückwärts

Studie über verdeckte Aufmerksamkeit erschienen

Warten wir auf der Straße auf jemanden, mit dem wir verabredet sind, erkennen wir die Person meistens oft schon von Weitem zwischen anderen Menschen. Unser Gehirn bewältigt diese Alltagssituation sehr effektiv, denn wir müssen nicht jede Person von Kopf bis Fuß betrachten. Mit dieser verdeckten Aufmerksamkeit hat sich Prof. Dr. Jens-Max Hopf mit einem Team des Leibniz-Instituts für Neurobiologie (LIN) Magdeburg und der Otto-von-Guericke-Universität Magdeburg (OVGU) sowie Prof. John Tsotsos von der York University in Toronto in einer neuen Studie im Journal Science Advances beschäftigt. Sie konnten zeigen, dass die Verarbeitung auch anders funktionieren kann als man bisher immer dachte.

„Verdeckte Aufmerksamkeit heißt, dass wir etwas in unserer Umwelt genauer und schneller wahrnehmen können, ohne dass wir direkt hinsehen müssen. Wie unser Gehirn Dinge oder Orte trotzdem erfassen kann und wie die Aufmerksamkeit unabhängig von der Blickrichtung zwischen Orten wechseln kann, umreißt unser zentrales Forschungsfeld“, erklärt Hopf. Trotz vieler Erkenntnisse über Mechanismen und Strukturen, die an der visuellen räumlichen Aufmerksamkeit beteiligt sind, ist immer noch wenig darüber bekannt, wie der Kortex die Aufmerksamkeit eigentlich verdeckt lenkt.

Schon seit vielen Jahrzehnten versuchen Forschende weltweit, die Mechanismen der visuellen Aufmerksamkeit zu verstehen. Bekannt ist beispielsweise das Selective-Tuning-Modell, das Tsotsos mit seinen Kollegen bereits in den 1990er Jahren entwickelt hat. Es geht von einer Top-Down-Informationsverarbeitung aus – ein von oben nach unten verlaufender Verarbeitungsfluss im visuellen Kortex. „Mehrere Annahmen dieser Theorie wurden schon durch Experimente unserer Arbeitsgruppe untermauert, aber andere wichtige Aspekte waren bis jetzt unbestätigt“, so Hopf.

Dr. Mandy Bartsch und ihre Kollegen konnten nun zeigen, dass die Verarbeitungsprozesse, die visuelle Aufmerksamkeit im Kortex ermöglichen, anders verlaufen kann als bisher immer vermutet. Man ging davon aus, dass die Verarbeitung von tieferen hin zu höheren Strukturebenen des visuellen Kortex erfolgt (bottom-up-Verarbeitung). Die Studie zeigt nun, dass besagte Prozesse top-down, also von höheren zu tieferen Strukturebenen des visuellen Kortex, innerhalb von wenigen zehntel Millisekunden ablaufen. Hopf erläutert: „Diese sehr schnellen top-down-Prozesse konnten wir nur mithilfe der zeitlich und räumlich sehr hochauflösenden Magnetoenzephalographie (MEG) erfassen.“

Dabei verwenden die Forschenden verschiedene Versionen einer visuellen Suchaufgabe, die es ihnen ermöglichen, den Grad der für die Zielidentifikation erforderlichen Aufmerksamkeitsverlagerung zu kontrollieren. Für die Analyse nutzen sie die sogenannte N2pc-Komponente, die sich als zuverlässiger Index für die Aufmerksamkeitsfokussierung bei der visuellen Suche erwiesen hat. Sie wird über dem visuellen Kortex kontralateral zu der Stelle im Raum, auf die die Versuchspersonen ihre Aufmerksamkeit richtet, ausgelöst. Wenn eine Versuchsperson beispielsweise ihre Aufmerksamkeit auf die linke Seite des Gesichtsfeldes richtet, erscheint die N2pc in der rechten hinteren Gehirnhälfte und umgekehrt. Diese Eigenschaft macht die N2pc zu einem nützlichen Instrument für die direkte Messung der allgemeinen Richtung der Aufmerksamkeit mit hoher zeitlicher Auflösung.

„Diese Arbeit löst nicht nur ein jahrzehntealtes Rätsel, sondern zeigt auch zum ersten Mal, dass der visuelle Kortex – und damit potenziell jeder sensorische Hirnbereich – eine weitaus komplexere Rolle bei intelligentem Verhalten spielt, als bisher anerkannt war. Der menschliche visuelle Kortex ist keine strikt aufsteigende Verarbeitungsstrecke, wie es jahrzehntelang die vorherrschende Meinung war. Er führt insbesondere absteigende Berechnungen durch, die den Fokus der Aufmerksamkeit zuweisen und die visuelle Selektion darin verbessern”, so das Autorenteam.

Aufmerksamkeit

Ist unsere Aufmerksamkeit noch nicht fokussiert (Bild oben), findet die Aktivitätsmodulation in höheren Arealen des visuellen Cortex statt. Haben wir uns jedoch kurze Zeit später auf jemanden fokussiert (Bild unten), dann wandert die Aktivierung zu niedrigeren Arealen mit kleineren rezeptiven Feldern, die eine höhere räumliche Auflösung bieten. Dies zeigt quasi den Endzustand der top-down-Wanderung: N2pc-Aktivierungen in niedrigen Arealen des visuellen Cortex (Collage: Adobe Stock & Hopf).

Pressetext: LIN